Convert Sorted Array to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
Analysis:
Because the requirement "height balanced", this problem becomes relative easy.
Just recursively use the middle element in the array as the root node of the current tree(sub tree).
Code(C++):
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* cbst(vector<int> &num, int st, int ed){ if (st>ed){ return NULL; }else{ int mid = st+(ed-st)/2; TreeNode *bst=new TreeNode(num[mid]); bst->left = cbst(num,st,mid-1); bst->right = cbst(num,mid+1,ed); return bst; } } TreeNode *sortedArrayToBST(vector<int> &num) { // Start typing your C/C++ solution below // DO NOT write int main() function if (num.size()==0){return NULL;} return cbst(num,0,num.size()-1); } };
Code(Python):
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param num, a list of integers # @return a tree node def bst(self, num, st, ed): if st > ed: return None mid = st + (ed - st)/2 left = self.bst(num, st, mid - 1) root = TreeNode(num[mid]) right = self.bst(num, mid + 1, ed) root.left = left root.right = right return root def sortedArrayToBST(self, num): n = len(num) if n == 0: return None return self.bst(num, 0, n-1)
You usually have Java code for the algorithms, solution is trivial still thought I'd comment in mine
ReplyDeletepublic class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if(nums.length==0) return null;
return createBST(0,nums.length-1,nums);
}
private TreeNode createBST(int start, int end, int[] nums) {
if(start>end) return null;
else {
int mid=start+ end >>1;
TreeNode subTree=new TreeNode(nums[mid]);
subTree.left=createBST(start,mid-1,nums);
subTree.right=createBST(mid+1,end,nums);
return subTree;
}
}
}
if the question asked to create a complete binary tree i.e. all leaf nodes must be as far left as possible could you help as to how to approach that?