Convert Sorted Array to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
Analysis:
Because the requirement "height balanced", this problem becomes relative easy.
Just recursively use the middle element in the array as the root node of the current tree(sub tree).
Code(C++):
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* cbst(vector<int> &num, int st, int ed){
if (st>ed){
return NULL;
}else{
int mid = st+(ed-st)/2;
TreeNode *bst=new TreeNode(num[mid]);
bst->left = cbst(num,st,mid-1);
bst->right = cbst(num,mid+1,ed);
return bst;
}
}
TreeNode *sortedArrayToBST(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if (num.size()==0){return NULL;}
return cbst(num,0,num.size()-1);
}
};
Code(Python):
# Definition for a binary tree node
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param num, a list of integers
# @return a tree node
def bst(self, num, st, ed):
if st > ed:
return None
mid = st + (ed - st)/2
left = self.bst(num, st, mid - 1)
root = TreeNode(num[mid])
right = self.bst(num, mid + 1, ed)
root.left = left
root.right = right
return root
def sortedArrayToBST(self, num):
n = len(num)
if n == 0:
return None
return self.bst(num, 0, n-1)
You usually have Java code for the algorithms, solution is trivial still thought I'd comment in mine
ReplyDeletepublic class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if(nums.length==0) return null;
return createBST(0,nums.length-1,nums);
}
private TreeNode createBST(int start, int end, int[] nums) {
if(start>end) return null;
else {
int mid=start+ end >>1;
TreeNode subTree=new TreeNode(nums[mid]);
subTree.left=createBST(start,mid-1,nums);
subTree.right=createBST(mid+1,end,nums);
return subTree;
}
}
}
if the question asked to create a complete binary tree i.e. all leaf nodes must be as far left as possible could you help as to how to approach that?